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synopsis 

An experimental and theoretical study has been carried out, as a continuation of our 
previous investigation, to better understand the problems associated with converging 
flows of viscoelastic polymeric melts. In the present study, measurements were taken of 
both stresses and velocities in the converging velocity field of polymeric melts flowing 
into a tapered slit die, stresses by means of the flow birefringence technique and velocities 
by means of streak photography. A theoretical 
analysis was also made of converging flow, using a modified second-order fluid model 
which assumes that all three material functions depend on the second invariant of the 
rate of deformation. Numerical solutions were obtained of the equations of motion, 
which give predicted velocity profiles in reasonable agreement with the measured velocity 
profiles. A comparison was also made of the experimentally determined stress dist.ribu- 
tions with the theoretically predicted ones. 

The material used was polystyrene. 

INTRODUCTION 

A better understanding of converging flow of viscoelastic polymeric melts 
is very important from both the practical and theoretical points of view. 
From a practical point of view, it will help provide valuable information 
on the design of extrusion dies of industrial importance (e.g., spinnerettes 
and film dies) and develop useful correlations between the rheological 
properties of the molten polymers and the processing variables affecting 
pressure drop and the extent of extrudate swell. From a theoretical point 
of view, converging flow, representing a nonviscometric flow, will provide an 
opportunity for testing the usefulness of various constitutive equations in 
other than viscometric flow. 

In the present paper, we shall first present our recent measurements of 
stresses and velocities in a viscoelastic polymeric melt flowing through a 
tapered slit die, having a half-angle of 30 degrees a t  the die entrance. The 
flow birefringence technique was used to  measure stress-birefringent pat- 
terns, and the technique of streak photography to measure the local veloci- 

2369 

@ 1973 by John Wiley & Sons, Inc. 



2370 HAN AND DREXLER 

ties of tracer particles suspended in polymer. The material used was 
polystyrene, and all measurements were taken at 200°C. 

A theoretical analysis was also made of converging flow, using a modified 
second-order fluid model, which assumes that all three material functions 
depend on the second invariant of the rate of deformation. With some 
simplifying assumptions concerning the relationships between the material 
functions, the equations of motion were solved numerically in order t o  
predict the velocity and stress profiles. A comparison was then made of 
these with the experimentally determined velocity and stress distributions. 

EXPERIMENTAL 

The' experimental apparatus used for the present study was essentially 
the same as that described in part I of this series,' except for the modification 
of a test cell. In  the present study, one of the test cells, referred to  as Cell 
#1 in part I of this series, was modified so that the slit die had an entrance 
angle of 60 degrees instead of a sharp-edged entrance. 

In  the present study, both the stress-birefringence patterns and local 
velocities were measured in the converging channel, the former by use of the 
polariscope following the experimental procedure as described in part I of 
this series,' and the latter by means of streak photography following the 
experimental procedure as described in part I1 of this series.2 

The polymer used for the present study was a general-purpose poly- 
styrene (Dow Chemical, Styron 686). This is the same material used in 
parts I and I1 of this series. 

RESULTS 

Stress-Birefringent Patterns and Streak Photographs 

Figure 1 gives representative pictures of isochromatic fringe patterns, 
in which i t  is seen that, as expected, the order of fringes increases with 
flow rate. A few qualitative observations can be made in Figure 1. First, 
the isochromatic bands (black and white) are convex along the centerline 
in the direction of melt flow. This is quite different from the case where the 
same material flows into a sharp-edged entrance (see Fig. 5 in part I of this 
series). The convexity of isochromatic fringe patterns along the centerline 
indicates a much stronger accelerative flow in a converging channel than in 
a sharp-edged entrance die. Second, the fringe patterns emanate from the 
center of the plane at which the slit die section truly begins. This indicates 
that stress keeps increasing as a melt flows from the upstream section into 
the entrance of the die section where maximum stresses are achieved. 
Third, at a distance of about twice the slit thickness from the entrance, the 
isochromatic fringe patterns are seen to be parallel to the slit die wall, 
indicating that the stresses have become independent of longitudinal direc- 
tion (i.e., flow direction). This observation is in conformity with the one 
described in part I of this series.' 
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Fig. 1. Isochromatic fringe patterns of polystyrene melts at 200°C in a converging 
channel having a half-angle of 30 degrees: (a) Q = 2.82 cc/min; (b) Q = 4.33 cc/min. 

Pictures of representative isoclinic fringe patterns are given in Figure 2 
at two different isoclinic angles, 30 and 50 degrees. It is seen in these pic- 
tures that dark, broad bands emanate from somewhere near the slit die 
entrance. It should be noted that the complete elimination of isochromatic 
fringe patterns was not possible when isoclinic fringe patterns were being 
recorded when using a plane polariscope. This was mentioned in part I 
of this series. The importance of isoclinic fringe patterns to quantitatively 
determine the shear stress and normal stress differences has also been de- 
scribed in the previous paper. 

Figure 3 gives a representative streak photograph of tracer particles 
(copper powders of 70% 44 microns and 30 % 149 microns) suspended in a 
molten polystyrene flowing through a converging channel. Over 20 pic- 
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Fig. 2. Isoclinic fringe patterns of polystyrene melts at 200°C in a converging channel 
having a half-angle of 30 degrees: (a) isoclinic angle of 30 degrees; (b) isoclinic angle of 
50 degrees. 

tures were taken a t  a fked flow rate. It is seen in this picture that streak- 
lines a t  the centerline are longer than those away from the centerline, in- 
dicating that particles a t  the center travel faster than those away from the 
centerline. It is also seen that streaklines near the entrance of the slit 
die section are longer than those in the upstream. 

It is appropriate at this point to discuss some important implications of 
the streak photograph shown in Figure 3. All the streaklines are oriented 
toward the die entrance, without showing any evidence of circulatory 
motion near the die entrance. This contradicts certain theoretical 
st~diesa-~ reported in the literature, which dealt with the flow of viscoelastic 
fluids through a converging channel, bounded by two nonparallel planes. 
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Fig. 3. Streak photograph of polystyrene melts at 2OOOC in a converging channel having 
a half-angle of 30 degrees; Q = 8.44 cc/min. 

In their analyses, these authors employed the perturbation technique, and 
they all concluded that the inclusion of second-order perturbation terms, 
which bring non-Newtonian effects, predicts velocity profiles having super- 
posed secondary circulation patterns. 

However, to the best of the present authors' knowledge, there has been 
no experimental evidence reported to support those theoreticaHy predicted 
secondary circulation patterns' in the flow of polymer melts through a 
converging channel. Certainly, both the stress-birefringent patterns 
and streak photographs reported in this study do not show such patterns. 
However, this is not surprising to us when considering the velocity of poly- 
metric melts in terms of Reynolds number. Because of the exceedingly 
large values of viscosity of polymer melts, as compared to those of dilute 
polymeric solutions, the Reynolds number in polymer melt flow is usually 
very low, say below in the present ex- 
perimental study. In  other words, under the experimental conditions a t  
which the flow is considered to be very slow, the visual detection of a notice- 
able circulatory motion may be very difficult to make, if not impossible. 

It was certainly below 

Stress and Velocity Distributions 

Having recorded both the flow birefringence data (isochromatic and 
isoclinic fringe patterns) and velocity data (streak photographs) , we were 
in a position to quantitatively determine profiles of stress and velocity. 
The analysis of experimental data was carried out using the schematic 
diagram of flow geometry given in Figure 4 and the procedures described 
in parts I and I1 of this series. 

Figures 5 and 6 represent the shear stress and normal stress difference 
profiles, respectively, of polystyrene melts at 20O0C, flowing through the 
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- - - 
Fig. 4. Schematic of flow geometry. 

tapered slit die having an entrance angle of 60 degrees (a half-angle of 
30 degrees). The normal stress difference profiles are quite different from 
those for a sharp-edged die, as given in Figures 11 to 16 of part I of this 
series’ on two accounts. One is that, in the tapered die (60 degrees en- 
trance angle), the stresses emanate from the slit region, whereas in the 
sharp-edged die (180 degrees entrance angle) the stresses emanate from 
the corner of the slit. Another is that, in the tapered die, the stresses end 
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Fig. 5. ExperimenBal shear stress profiles of polystyrene melts at 200’C; Q = 5.36 
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Fig. 6. Experimental normal stress difference profiles of polystyrene melts at 200OC; 
Q = 5.36 cc/min. 

a t  the wall of the wedge, whereas in the sharp-edged die the stresses form 
loops in the corners of the upstream reservoir. The differences are also 
evident when the shear stress profiles in the two cases (60 and 180 degrees 
entrance angles) are compared. 

Figure 7 gives the velocity profiles a t  various radial positions from the 
vertex (see also Fig. 4). As noted in part I1 of this series12 a particular 
radial position in Figure 7 represents the distance measured along the 
streamlines of the system from its vertex. In Figure 7, the dotted lines 
represent the observed data, while the solid lines are the theoretically 
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Fig. 7. Experimental velocity profiles of polystyrene melts at 200°C; Q = 4.33 cc/min. 
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predicted velocity profiles obtained by solving the equations of motion 
with the use of a modificd second-order constitutive equation. Details of 
the theoretical analysis carried out in the present study will be presented 
below. 

THEORETICAL ANALYSIS 

Having experimentally determined both the stress and velocity distribu- 
tions, we shall now give theoretical considcration to  converging flows of 
viscoelastic polymeric melts. 

For this, we shall considcr thc wedge Bow, that is, the flow of a polymer 
melt flowing between two nonparallel planes which converge toward the 
entrance as schematically shown in Figure 4. For the wedge flow, stream- 
lines will be assumed to be emanating radially from the point of intersection 
of the two nonparallel planes. That is, it will be assumed that there is no 
secondary flow within the converging flow field. This is justified by both 
the stress and velocity measurements shown in Figures 1 and 3. 

Now then, using the cylindrical coordinate system, the velocity field is 
given by 

Vr = V,(r,e), Ve = V ,  = 0 (1) 

which upon substitution into the continuity equation, 

gives 

V,(r,e) = f (e ) / r ,  Ve = V,  = 0, (3) 
in which f(0) is an as yet undetermined function depending on 0 only. The 
function f(0) in eq. (3) will be determined, however, when the equations 
of motion are solved for V,(r,e), subject to  boundary conditions specified as 

(i) V,(r,e = f a) = 0 (4) 

(ii) (z) = 0. 
e=o 

The equations of motion in cylindrical coordinates can be written as 

ap 1 a 1 d.r,e Tee 
- - + - - ( r r , , ) + - - - -  = O  br r br r be r 

l b p  1 b 1 bree - - - + - - (r2.r1e) + - - = 0 
r be r2br  r be (7) 

when the inertia terms involved are neglected. 
It now becomes clear that solution of eqs. (6) and (7) with the aid of eqs. 

(4) and (5) requires relationships between the components of stress and 
deformation rate. The relationships sought here are very simple for 
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Newtonian liquids, and this converging flow problem has been solved for 
that 

It has been established in previous s t u d i e ~ ~ . ~  that the polymer melts 
employed in the present series of papers exhibit both non-Newtonian 
viscous and elastic behavior in steady, simple shearing and also Poiseuille 
flow. For such materials, it is a well-established fact that the stress is a 
complicated function of the deformation rate, depending not only on the 
rate of deformation, but also on its time derivatives (acceleration terms). 
Furthermore, the local stresses depend not only on the local rate of deforma- 
tion, but also on the previous history of the fluid. In order to treat flow 
problems associated with converging flow of viscoelastic fluids in general, 
the authors concur with the remark made by Bogue and Doughty'O that 
use of integral constitutive equations would seem to be more appropriate 
than differential ones. However, in polymer melt $ow, use of differential 
constitutive equations would seem to be justifiable on the grounds that the 
change of deformation rate in the converging flow field may not be so im- 
portant. This argument is based on the fact that polymer melt flow even 
in the entrance region is so slow that the melt can be considered as possessing 
solid-like properties, giving rise to large values of Deborah number. 11*12 

From the slow flow of polymer melts comes the justification of neglecting 
the inertia terms in eqs. (6) and (7). Under the experimental conditions 
a t  which stress and velocity measurements were taken in the present study, 
Reynolds numbers in the fully developed region (i.e., the downstream end 
of the slit) lie somewhere between This range of extremely 
low values of Reynolds numbers in polymer melt flow gives us a perfect 
justification for neglecting the inertial effects when solving the equations 
of motion. 

Again, a choice of constitutive equation, even restricted to the differential 
type, is somewhat arbitrary to the extent that it reasonably describes the 
experimentally observed rheological behavior, namely, non-Newtonian 
viscosity and normal stress effect. Considering the nature of the problem 
in question, the analysis is expected to become quite complicated even 
with a constitutive equation of simple form. 

In  the present study, we have chosen a modified second-order fluid 
model represented as 

and 

Ti j  = - pgij + v(II)Afjc1) + B(II)Alk(l)Asj(l) + .(II)Aij(2) (8) 

A if = v1.j + uj ,r  (9) 

where A,(') and are defined as 

bA#) 
at 

A (2) = - + vmAfj.m(l) + Aim(')P,j + Amj(l)P,j. (10) u 

Note in eq. (8) that 
and A1,(2), respectively, and that the three material constants 9, p, and v are 
assumed to be functions of the second invariant, 11. Equation (8) has been 

and At,@) are the physical components of 
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suggested by White and Metzner13 and Bogue.14 In his work, Bogue14 
represented the memory function, appearing in the integral form of the 
Coleman-No11 second-order fluid mode115 by a discrete-spectrum form and 
obtained three material constants of the form 

Because of the complexity of the equations of motion to be solved here, 
we shall not use eqs. (11) to  (13). Instead, we shall use a simple power- 
law relationship between the material constants and the second invariant. 
Thus, 

p(II) = Kz [i IIIp’’ 

Note that constants KI, K2, K3, m, p ,  and q can be determined from the 
use of experimental data obtained under viscometric flow conditions. 

For the velocity field given by eq. (3), one has 

and 

Use of eqs. (17) to (19) in eq. (8) gives 
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in which 

where 

K3 [@]'I2 
- v ( I I )  = ~ 

rzU 

* = 4$ + fI2. 

Substitution of eqs. (20) to (22), together with eqs. (24) to (26), into 
eqs. (6) and (7) will presumably yield an expression which is to  be solved for 
j ( 0 ) .  However, one will soon find that, unless a restriction is placed on the 
indices of power-law equations given by eqs. (14) to (16) such as 

p = q = m - 1, 

the system of equations will not be amenable to solution. Now, using the 
restriction given by eq. (28) and the relationships given by eqs. (20) to 
(22), the equations of motion, eqs. (6) and (7), become 

(28) 

where 

A(e) = (2m + 1)(2K1w/2f - K2@(m+1)'2 + sK3@(m-1)/2$) (31) 
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d 
de 

a’ = - (4$ + f’”. 
One can now eliminate the pressure terms from eqs. (29) and (30) by 

differentiating eq. (29) with respect to  0 and eq. (30) with respect to  T and 
combining the resulting expressions: 

A’(@ + B’(e) - C’(e) + 2(m + l)D(e) + 2(m + 1)E(e) = 0 (37) 

where A’@), B’(0), and C’(0) are the derivatives of A @ ) ,  B(0), and C(0), 
respectively. It has been demonstrated above that the restriction given 
by eq. (28) has enabled us to  eliminate the dependence of the resulting 
differential equation, Eq. (37), on the independent variable T.  Thus, one 
is left with eq. (37), which relates f as a function of 0 only. Solution of 
eq. (37) for f and substitution into eqs. (22) and (23) will yield expressions 
for the shear stress and the normal stress difference as functions of 0 and r.  

It is now seen that eq. (37) is a third-order, nonlinear ordinary differential 
equation in f (e ) ,  which should be solved subject to  the boundary conditions 

6) f ( 4  = 0 

(ii) f’(0) = 0 

(38) 

(39) 

(iii) f(0) = constant. (40) 

The first boundary condition implies that the velocity is zero at the walls 
of the wedge, as seen from eq. (4). The second boundary condition is 
related to  the velocity gradient at the centerline of the wedge. One notes 
that the maximum velocity will occur along the centerline of the wedge. 
Therefore, the velocity gradient at this point would be equal to  zero. 
Since, for a fixed volumetric flow rate, the maximum centerline velocity 
remains a constant, any constant value can be used for f (0) .  However, 
f(0) is related to  the volumetric flow rate, as will be shown below. 

Numerical solution of eq. (37) for f(0) would pose no difficulty, although 
an elaborate algebraic manipulation will be needed to  rewrite it, with the 
aid of eqs. (31) to  (36), in a form convenient for computation. I n  the 
present study, we have recast eq. (37) into a set of three first-order differ- 
ential equations, by introducing the transformation 

Xl(0) = f(0) 

xm = (41) 
me) = y(e) 

which then yields 
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where 

Appropriate boundary conditions for eqs. (42) to (44) are 

(i) Xl(0) = constant (49) 

(ii) Xz(0) = 0 (50) 

(iii) Xl(a) = 0 (51) 

which follow from eqs. (38) to (40). Note that the initial value of X3, 

X3(0) is not known beforehand. However, a computation can be per- 
formed by initially assuming X3(0), and then checking the computed value 
of Xl(a) against the known value of Xl(a), specified in eq. (51). In other 
words, a numerical solution of eqs. (42) to (44) can be obtained as an initial- 
value problem, instead of as a boundary-value problem, using a "shooting" 
technique suggested by Keller. l6 A predictor-corrector numerical scheme 
was used to solve the system of differential eqs. (42) to (44). In addition, 
a Runge-Kutta scheme was used to generate the starting values of the 
integration. 

Once f(0) is determined, one can determine the velocity using eq. (3) 
and the stresses using eqs. (20) to (23). In addition, the volumetric flow 
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rate can be calculated and compared to experimental values. 
metric flow rate per unit width of slit is given by 

The volu- 

= 2s' 0 v(r,6)rdS = 2s'f(O)dS. 0 (52) 

Before we discuss the numerical solution of eqs. (42) to (44), it would be 
worth considering a few special cases of the modified second-order fluid 
model given by eq. (8). First, it  can be seen that, for inelastic power-law 
fluid, when K2 = K3 = 0 is substituted into eqs. (31) to (35), one obtains 
from eq. (37) 

which is identical to  the expression obtained by Wissler.6 Second, for 
Newtonian fluids, setting m = 0 reduces eq. (53) to 

f" + 47 = 0 (54) 

which also has been discussed in the 1iterature:J 
It has been shown above that the use of the modified second-order fluid 

model given by eq. (8) can be used to obtain a feasible solution for flow in a 
converging flow field. However, before these results can be considered, it 
must be demonstrated that the model does represent a viscoelastic poly- 
meric melt, if not for an entire class, at least for a limited class of materials. 
This will be shown by substituting the constitutive model into the equation 
of motion for a simple laminar shearing flow situation. The results of this 
operation will then be compared with rheogoniometer data obtained for 
various polymer melts. 

DISCUSSION 

Determination of the Material Constants of the Modified 
Second-Order Fluid 

A truly representative case of simple laminar shearing flow is flow be- 
tween two infinitely wide parallel plates. This type of flow field can be 
characterized by 

v, = v&), v, = v, = 0 (55) 

vz,, = -i. (56) 

and the velocity gradient is given by 

Upon substitution of eqs. (55) and (56) into the Eqs. (9) and (lo), one 
obtains the following: 
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and the second invariant becomes 

11 = I&(')* = 2-p. (59) 
Substitution of eqs. (57) to (59) into the modified second-order model, 
Eq. (8), along with the restrictions given in eq. (28), yields the following 
expressions for the shear stress, the first normal stress difference, and the 
second normal stress difference, respectively : 

- K1+m+l (60) 

(61) 

(62) 

Tzy - 
T=Z - rYY = 2K3ym+l 

r y y  - 7 2 2  = KzYm+l -2K3yrn+l. 

It now remains to be shown that eqs. (60) to (62) do represent rheological 
behavior of the polymer melts investigated. Measurements of the visco- 
elastic properties of the three polymer melts used in the experimental por- 
tion of this study were taken by Han et al.9, using the Han slit/capillary 
rheometer at high shear rates and the Weissenberg rheogoniometer a t  low 
shear rates. The results of their work are shown in Figures 8 and 9. 
Figure 8 shows plots of shear stress versus shear rate and Figure 9 plots of 
first normal stress difference versus shear rate. It should be pointed out 

c T = 2W0C 

t 

,I I I , " ' L  

10-1 I00 10 0 2  lo3 
y (sec-1) 

Fig. 8. Plots of shear stress vs. shear rate for three polymer melts investigated. 
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T = 2OOoC 
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Fig. 9. Plots of normal stress difference vs. shear rate for three polymer melts investi- 
gated. 

that  the first normal stress difference a t  high shear rates was determined by 
using the revised theory of Han. 17 

It is seen in Figures 8 and 9 that a t  high shear rates, say a t  above 10 sec-', 
the shear stress and the first normal stress difference both follow a power- 
law relationship : 

rxy = K q n  (63) 

(64) rxx - ryy = C, id  

The numerical values of K ,  n, c, and d obtained from Figures 8 and 9 are 
given in Table I. It is interesting to  note that values of the power-law 
exponents n and d are very close. In  presenting these results, we do not 
wish to  claim that all materials should have equal exponents. However, 
for the materials tested, covering a shear rate range of from, say, 20 to  1000 
sec-l, this was approximately the situation. While some of the reported 

TABLE I 
Material Constants of the Polymer Melts Investigated for a Power-Law Fluid 

K ,  c, 
n dynes d (% secn) (dimension- (z seen) (dimension- 

Material X 15-5 less ) x 10-5 less) 

Polystyrene 1.76 0.30 3.26 0.30 
Polypropylene 0.44 0.52 1.02 0.52 
High-density 

polyethylene 1.18 0.37 3.55 0.35 
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differences may vary as much as 50%, this is a far better approximation than 
using the Coleman-No11 second-order fluid (15) which predicts : 

rzy = KIY (65) 

(66) 
Therefore, in view of the fact that both the shear stress and the first 

normal stress difference have approximately equal exponents in the power- 
law representation given by eqs. (63) and (64), it can be said that eqs. (60) 
and (61) derived from the modified second-order model, eq. (S), represent 
flow behavior of the polymer melts investigated in the present study. 
However, it still remains to be shown that the expression of the second 
normal stress difference given by eq. (62), too, is reasonable. 

During the past decade there have been a number of reports which 
indicate that the second normal stress difference of viscoelastic fluids is not 
zero. A few reccnt papers18-20 present a summary of the past studies on 
the subject. At present, a most prcvailing evidencc, from both the thco- 
retical and experimental points of view, indicates that the second normal 
stress difference is negative and its magnitude is smaller than the magnitude 
of the first normal stress differ~nce.~7-~0 

Now, one can obtain from eqs. (61) and (62) the ratio of the second 
normal stress difference to  the first: 

rz2 - T,, = 2K3+' 

which indicates that the normal stress ratio is constant, independent of 
shear rate. It should be noted that this conclusion is reached due to thc 
restrictions made in eq. (28). Interestingly enough, however, recent 
s t u d i e ~ ~ ~ - ~ ~  appear to support eq. (67). For the polymer melts used in the 
present study, Han17 reports that - (r,, - rE2)/(rZZ - r,,) lies between 0.4 
and 0.6, almost independent of shear rate under the conditions investi- 
gated. Now then, eq. (67) may be used to determine the material constant 
Kz from 

Kz = 2& (1 - C1) (68) 

in which C1 is a constant, defined by the left-hand side of eq. (67). Using 
the results of Figures 8 and 9 and the values of C1 reported by Han17, the 
constants m, K1, Kz and K3 appearing in eqs. (60) to  (62) have been de- 
termined and they are listed in Table 11. 

A Comparison of the Theoretical and the Experimental Results 

Figure 10 gives the predicted velocity profiles a t  T = 0.1 cm from the 
vertex (see Fig. 4), for comparison purposes, of the modified second-order 
fluid, the power-law fluid, and the Newtonian fluid. Note that all three 
profiles represent the material flowing with the same volumetric flow rate, 
Q = 5.41 cc/min. One notes that the modified second-order fluid gives a 
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TABLE I1 
BInterial Consfants of the Polymer Melts Investigated for a Modified Second-Order Fluid 

K1, Kz, K3, 
??l dynes dynes dynes 

(dimension- (? seen) (? seen,) (z seen) 
Material less) x 10-5 x 10-5 x 10-6 

Polyst.yrene -0.69 1.73 1.77 1.64 
Polypropylene -0.48 0.45 0.46 0.52 
H igh-densit*y 

polyethylene -0.62 1.18 2.02 1.74 

flatter velocity profile across the center than the other two fluids, and that 
it further predicts a lowcr centerline velocity than either the power-law 
or thc Newtonian fluids. An extensive computation has been carried out 
to cover a wide ranga of flow rates, wedge angles, material constants, etc. 
However, spacc limitation here does not permit us to  present these com- 
puted velocity profiles. As noted previously, the boundary condition given 
in eq. (40) has been determined by the volumetric flow rate. Since various 
flow rates were tested, the value of f(0) had to be changed. Table I11 
shows how, for a given set of m, K1,  K2, and Ka, the termsf(O), &, andf" (0) 
vary. 

At this point, it  is worth taking a close look, once again, at the experi- 
mentally determined velocity profiles given in Figure 7 in view of Figure 10. 
It is secn that the experimental velocity profiles have shapes similar in 
appearance to those for a Newtonian fluid, and yet the centerline velocity 

40 t 

" 
90 95 100 105 110 115 I20 

ANGULAR POSITION,degrees 

Fig. 10. Theoretically predicted velocity profiles (& = 5.41 cc/min). 
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TABLE I11 
Computed Data for Flow of a Modified Second-Order Fluid into a Converging Channel 

f(O), cm2/sec &, cc/sec/width f ” ( O ) ,  cm*/sec 

0.040 
0.049 
0.051 
0.077 
0.100 
0.150 

0.0334 
0.0411 
0.0428 
0.0642 
0.0841 
0.1270 

-0.124 
-0.151 
-0.157 
-0.235 
-.0.306 
-0.455 

of the experimental profile comes closer to  what would be predicted for a 
modified second-order fluid. It can be said that the theoretical analysis 
presented in this paper predicts velocity profiles which are sensitive to  the 
individual constitutive equations. Also, it can be said from Figure 7 
that the agreement between the experimental and theoretical (solid line) 
results near the centerline is very good. As noted in a previous paper,2 the 
scatter of the data away from the centerline is most probably due to  the 
fact that when streaklines were photographed the camera was focused at 
the centerline. To the best of the authors’ knowledge, this is the first 

Fig. 11. Theoretically predicted profiles of shear stress for polystyrene using the modified 
second-order constitutive equation; Q = 5.36 cc/min. 
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Fig. 12. Theoretically predicted profiles of normal stress difference for polystyrene using 
the modified second-order constitutive equation; Q = 5.36 cc/min. 

attempt made a t  comparing experimentally determined velocity profiles 
with theoretically predicted ones, in the flow of polymer melts through a 
converging channel. 

The numerical results off, f', and f" as a function of 8 can be substituted 
into eqs. (22) and (23) in order to  calculate the shear stress and the normal 
stress difference. When this is done, one obtains values of the stresses 
in the cylindrical coordinate system. Since the flow birefringence tech- 
niques used in the experimental portion of this investigation utilizes the 
rectangular coordinate system, a direct comparison of results is not pos- 
sible, unless one system is transformed into the other. For this reason, 
the theoretical stresses calculated in the cylindrical coordinate system have 
been converted into the rectangular coordinate system. This transforma- 
tion was accomplished with the following set of equations, which were 
derived by Adams21: 

(69) 1 r o e )  - 2rre tan 28 
cos 28[1 + tan228] 722 - 

and 

(70) 
- 7 7 0  

cos 28 
tan 28[(rr7 - roe) - 27,e tan 281 

2 cos 2e[l + tan228] 7 Z Y  = - - 
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Fig. 13. Theoretically predicted profiles of shear stress for polystyrene using the power- 
law model; Q = 5.36 cc/min. 

Figures 11 and 12 show the theoretically predicted profiles of shear stress 
and first normal stress difference, using the modified second-order fluid, 
for polystyrene flowing into the tapered slit die having an entrance angle of 
60 degrees. 

For comparison purposes, the theoretically predicted shear stress and 
normal stress profiles are shown in Figures 13 and 14 for a power-law fluid, 
and in Figures 15 and 16 for a Newtonian fluid. Note that the theoretical 
profiles in Figure 11 and 16 were obtained for the same volumetric flow 
rate. 

While not much difference is seen between the normal stress difference 
profiles for different models, except for the actual level of the stress, a major 
difference is seen in the shear stress profiles. The difference can be seen in 
how the shear stress profile approaches the wall of the wedge. In  the case 
of the Newtonian fluid representation (see Fig. 15), the curve ends a t  the 
wall. However, the curve for the power-law fluid (see Fig. 13) tends to 
reverse itself as it approaches the walls. The curve for the modified second- 
order fluid (see Fig. 11) not only reverses itself near the wall, but actually 
forms a loop in contrast to the other fluids. Also, an extensive computa- 
tion has been carried out over a wide range of flow rates, wedge angles, and 
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Fig. 14. Theoretically predicted profiles of normal stress difference using the power-law 
model; Q = 5.36 cc/min. 

material constants, etc. However, space limitation here does not permit 
us to  present all those results. 

It is now possible to make a comparison between the theoretically deter- 
mined (Figs. 11 to 16) and the experimentally obtained stress distributions 
(Figs. 5 and 6). The results of the comparison indicate that the modified 
second-order model gives a pattern somewhat similar to the experimental 
profiles. In  addition, the stresses are approximately of the same order of 
magnitude. However, if one compares the Newtonian model shown in 
Figures 15 and 16 with the experimental profiles, Figures 5 and 6, one 
obtains a much closer agreement between results. This is not entirely 
surprising when one computes the shear rate investigated in the slit region 
under the particular experimental condition being considered, which is 
about 11 sec-'. Although there is no easy way to  compute a shear rate for 
the converging wedge area, one would predict a shear rate of about one or 
two orders of magnitude smaller than that found in the slit section. As 
may be seen in Figures S and 9, a shear rate of this magnitude in the flow 
of polystyrene would correspond to either the Newtonian region of the 
flow curve or at least the transition region. Therefore, it is not surprising 
to  see that the particular experimental data being considered tends to 
agree more closely with the Newtonian model than with the modified 



VISCOELASTIC POLYMERIC MELTS 2391 

Fig. 15. Theoretically predicted profiles of shear stress for polystyrene using the New- 
tonian constitutive equation; Q = 5.36 cc/min. 

second-order model. Due to a limited pumping capacity, very high shear 
rates were not obtainable. In addition, more important than anything 
else, as the shear rate was increased for polystyrene, the number of iso- 
chromatic fringe patterns increased to such an extent that identiJication of 
the fringe order was not possible. This, indeed, is a practical limitation of the 
use of flow birefringence technique. 

One should mention a t  this point that Adams et a1.2z attempted to com- 
pare the normal stress difference along the centerline predicted by the 
Coleman-No11 second-order model with their own experimental results 
obtained with a polymer solution. Later, Fields and Boguez3 made a 
similar attempt using a simplified version of the BICZ modelz4 in evaluating 
normal stresses along the centerline of the converging flow field. However, 
these authors did not make any attempt to compare the stress profiles in the 
entire converging flow field. That would have required solutions of the 
equations of motion. 

Again, to the best of the authors' knowledge, the study reported above 
appears to be the first attempt made a t  comparing the experimentally 
determined profiles of shear stress and normal stress differences with the 
theoretically predicted ones, in the flow of polymer melts through a con- 
verging channel. 
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Fig. 16. Theoretically predicted profiles of normal stress difference for polystyrene using 

the Newtonian constitutive equation; 4J = 5.36 cc/min. 

CONCLUSIONS 

The present study demonstrates once again the usefulness of the experi- 
mental techniques of flow birefringence and streak photography for the 
investigation of polymeric melt flow in a converging channel. The tech- 
nique of flow birefringence has provided quantitative information of both 
the shear stress and normal stress difference, and the technique of streak 
photography has provided information of velocity distributions. It has 
been found that neither the stress nor velocity measurements indicate any 
noticeable evidence of circulatory motion when the polymer melts, which 
are viscoelastic, flow through the converging channel. The apparent 
absence of circulatory motion, though predicted by earlier theoretical 
investigations, may be attributed to  the very slow motion of polymer melts 
even in the accelerative flow field concerned. The extremely slow flow of 
polymer melts (in terms of Reynolds number) has permitted us to make the 
assumption of creeping flow in carrying the theoretical analysis. 

The experimentally obtained profiles of stress and velocity compared 
favorably with the theoretically predicted ones, which were obtained by 
numerically solving the equations of motion using a modified second-order 
constitutive equation. The theoretically predicted profiles of shear stress 
and normal stress difference are very similar in shape to  those obtained by 
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the flow birefringence experiment. In addition, the values of the stresses 
are of the same order of magnitude as those found experimentally. The 
theoretically predicted velocity profiles also are found to be in reasonable 
agreement with those obtained by the technique of streak photography. 

This work was supported in part by the National Science Foundation under Grant 
GK-23623, for which the authors are grateful. 
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